

SYNTHESIS AND STRUCTURE OF SOME 3,4-ANNELATED COUMARIN SYSTEMS

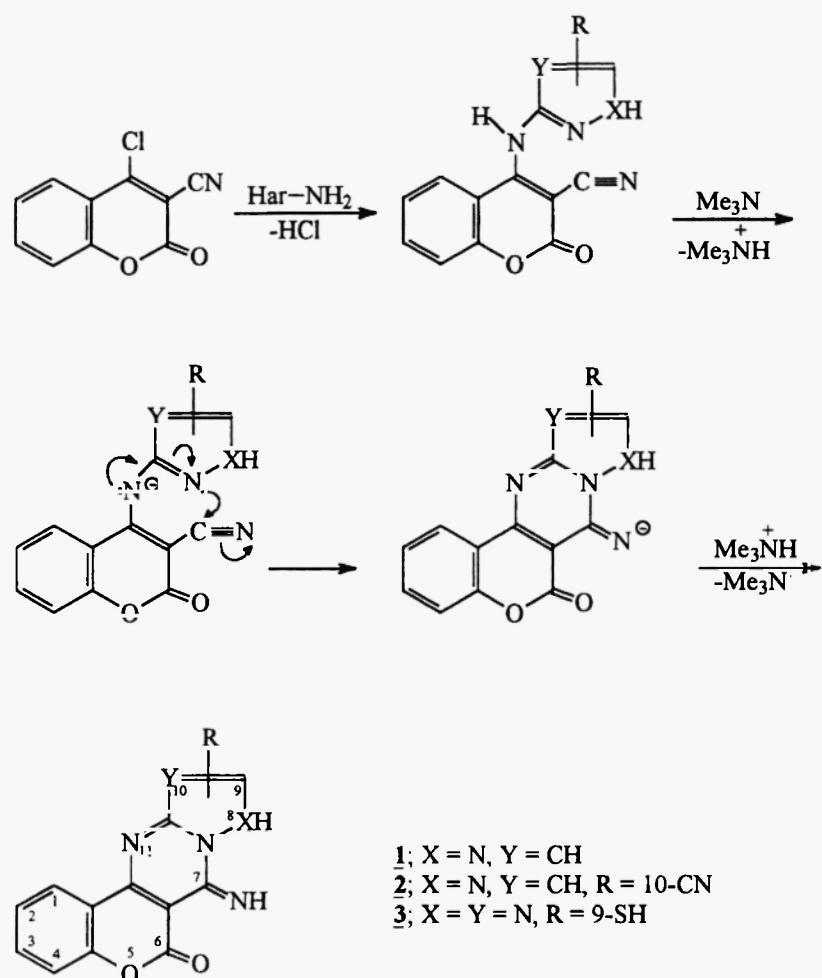
Sevdije Govori^a, Vuksan Kaljaj^a, Vladimir Rapic^{*b}, Lidija Kaljaj^a, and Senka Đakovic^b

^aFaculty of Science, University of Pristina, Pristina, Yugoslavia

^bFaculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia

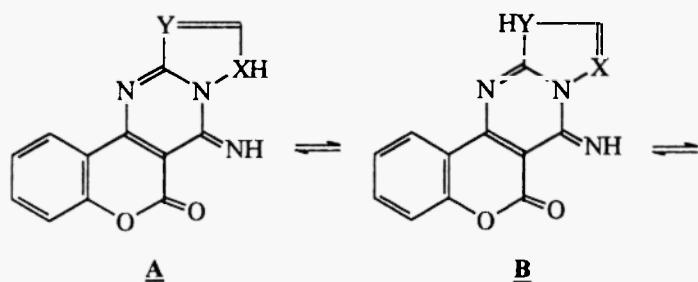
Abstract

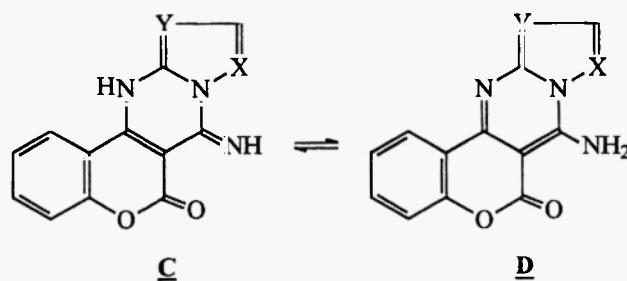
Refluxing of 4-chlorocoumarin-3-carbonitrile, heteroarylaminines (3-aminopyrazole, 3-aminopyrazole-4-carbonitrile, 3-amino-1,2,4-triazole-5-thiol, 2-amino-6-fluorobenzothiazole, 2-amino-pyridin-3-ol, 1-aminoisoquinoline) and the catalytic amount of trimethylamine in acetonitrile gave the corresponding 3,4-annelated coumarins **1-6** in high yields. The spectral analysis showed that 7-amino-5-oxa-7a,8,11-triazacyclopenta[b]phenantren-6-one (**1**) existed as enamine, **2** as a mixture of enamine 7-amino-6-oxo-5-oxa-7a,8,11-triazacyclopenta[b]phenantren-10-carbonitrile (**2a**) and imine 7-imino-6-oxo-7H,8H-5-oxa-7a,8,11-triazacyclopenta[b]phenantren-10-carbonitrile (**2b**), whereas 10-fluoro-7-imino-7H-5-oxo-12-thia-7a,13-diazaindene[1,2-*b*]phenantren-6-one (**4**), 11-hydroxy-7-imino-7H-7a,12-diazabeno[*a*]anthracen-6-one (**5**) and 7-imino-7H-5-oxa-7a,14-diazadibenzo[*a*,*h*]anthracen-6-on (**6**) took imino forms.


Introduction

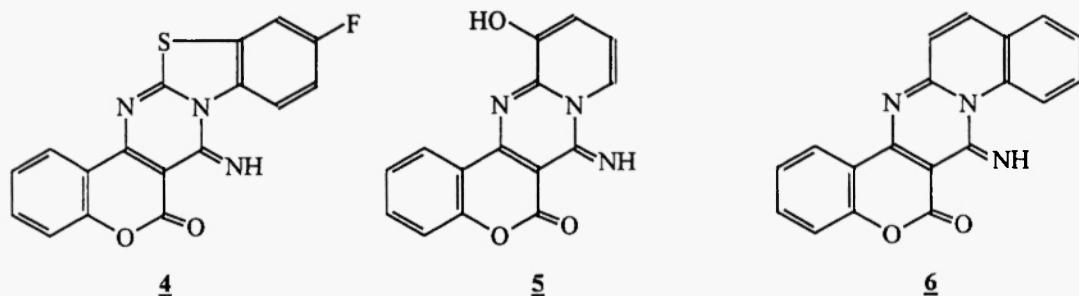
In our previous work (1, 2) on the chemistry of 3,4-disubstituted coumarins and the derived coumarins annelated in the 3,4-position we have prepared several fused systems starting from 4-chlorocoumarin-3-carbonitrile (**3**) and the appropriate heteroarylamine (2-amino-6-methylbenzothiazole, 2-aminobenzimidazole, 2-amino-5-chlorobenzoxazole, 3-amino-5-methylbenzoxazole and 2-amino-1,3,4-thiadiazole). It was shown that the obtained polycyclic imines underwent acidic hydrolysis giving the corresponding oxoderivatives (1, 2).

Results and Discussion


The aim of the present paper is to prepare several similar coumarin-containing systems and to investigate their structure, having in mind the possible formation of enamino and/ or imino tautomeric forms.

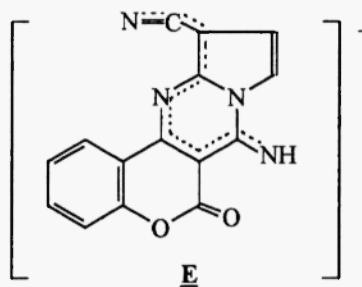

First we synthesized tetracyclic compounds **1-3** which could tautomerize in several ways. These preparations were performed by annelation of 4-chlorocoumarin-3-carbonitrile with 3-aminopyrazole, 3-aminopyrazole-4-carbonitrile or 3-amino-1,2,4-triazole-5-thiol in the presence of catalytic amount of trimethylamine. These conversions could succeed by the following mechanism (Scheme 1).

Scheme 1

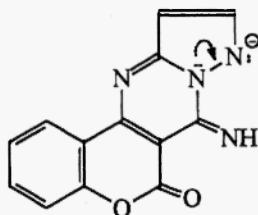

The products obtained can be presented either by imino forms **A**, **B** and **C** or by enamino form **D** (Scheme 2).

Scheme 2

Starting from the same coumarin substrate by the action of 2-amino-6-fluorobenzothiazole, 2-amino-pyridin-3-ol or 1-aminoisoquinoline under the similar conditions, the following compounds were synthesized (Scheme 3).


Scheme 3

It is obvious that compounds **4-6** existed only in the presented imino forms. Their structure was confirmed by spectral analysis: the corresponding molecular ions (intensity 16-21 %) were found in mass spectra, and IR spectra contained strong bonds at $1610\text{-}1650\text{ cm}^{-1}$ corresponding to $\nu\text{ C=N}$. ^1H NMR spectra were taken in TFA showing the coumarin protons at the expected positions (δ): $\sim 8.25\text{ ppm}$ (H-1), ~ 7.42 and $\sim 7.32\text{ ppm}$ (H-2 and H-4), and $\sim 7.65\text{ ppm}$ (H-3). Hetero(aromatic) protons were registered at $7.36\text{-}8.41\text{ ppm}$ (**4**), $7.70\text{-}8.57\text{ ppm}$ (**5**), and $7.69\text{-}9.27\text{ ppm}$ (**6**). Unfortunately, it was impossible to identify imino group because it was converted by TFA into iminium and the corresponding protons probably coalesced with TFA proton, giving a broad signal at $\delta = 11.37\text{ ppm}$. Due to low solubility of **4** and **6** in DMSO-d_6 , only NMR spectra of **5** were recorded in this solvent. Beside of the coumarin and hetero(aromatic) protons which were found at the similar positions as above described, imino-protons were registered at 9.77 ppm . It is worth to mention that the spectra were temperature independent (r. t. and $80\text{ }^\circ\text{C}$), and the $=\text{NH}$ peak disappeared by shaking with D_2O . ^{13}C spectrum corroborated imino structure by quaternary (APT) "amidine" carbon (C-7) registered at $\delta = 149.6\text{ ppm}$. ^{13}C NMR spectrum of **6** taken in TFA contained a weak peak at 156.3 ppm which could be attributed to (C-7) bearing iminium group. Having in mind the spectral characteristics of imines **4-6** the structural analysis of the above described coumarins **1-3** should be more reliable.


¹H NMR spectra of 1 in DMSO-d₆ at r. t. and at 85 °C were identical. They contained signals of coumarin protons [8.29 (H-1), 7.60 (H-3) and 7.37-7.30 ppm (H-2, H-4)] and of heteroaromatic protons [8.32 (H-9) and 6.58 ppm (H-10)]; a broad singlet at 9.20 ppm (2H) was attributed to amino group. The chemical shift at 149.4 ppm in ¹³C spectrum belonging to quaternary atom C-7 bearing amino group, corroborated the enamino structure D also.

¹H NMR spectra of 2 taken in DMSO-d₆ showed, besides the coumarin and heteroaromatic protons signals found at expected positions, three types of nitrogen-protons: at ~9.2, ~9.7 and 8.44 ppm. By comparison with the above described data it can be concluded that the first belongs to enamino form D, the second to "amidine" proton (at C-6) and the third one has to be attributed to heteroaromatic nitrogen protons, either N-7 (form A), N-10 (form B) or N-11 (form C). It was demonstrated that this ¹H spectrum is temperature dependent, and one can calculate that ratio of enamino and imino forms changed from 30 : 70 at r. t. to 60 : 40 at 85 °C. ¹³C NMR spectrum of 2 taken in DMSO-d₆ showed a signal at 9.73-9.70 ppm attributed to imino group (C-7). By shaking with D₂O signals of nitrogen protons of 1 and 2 in DMSO-d₆ disappeared, and by recording spectrum in TFA coalesced with protons of solvent in a broad signal centered at 11.35 ppm.

Unfortunately, the sample 3 was quite insoluble in DMSO and the spectral analysis of imino-enamino tautomerism was impossible. But ¹H NMR spectra of this compounds taken in TFA indicated presence of both forms by broadening and/ or multiplying the signals. On the basis of the above described data, it is obvious that the enamino form D of tautomerisable coumarin derivatives 1-3 is more (thermodynamically) stable than imine (A-C), and that compound 1 existed exclusively in this form. Electron-withdrawing cyano group of 2 initiated base catalysed tautomerization of enamine by stabilization of the intermediate "enamide" anion E:

By r. t. prevailed kinetic controlled imine, and by 85 °C the dominant product is equilibrium controlled enamine. Stability of enamine D is obvious from its structure: beside of the four conjugated double bonds in the annelated *N*-heterocyclic part of molecule, it contained a fused aromatic pyrazole ring. On the other hand, contribution of resonance structure F is probably minor because of destabilizing mesomeric electron-donating effect of tertiary N-7a on imide anion N-8, expliciting once again stability of enamine form.

F

It seems that structure **A** is the most stable one of all theoretically possible imino forms: it contained three conjugated endocyclic bonds and structures **B** and **C** are characterized by only two of them.

Experimental

Melting points were determined with a Buechi apparatus. The IR spectra were recorded for KBr pellets with a Bomem MB 100 mid FT IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded on a Varian EM 360 or Varian Gemini 300 spectrometer with tetramethylsilane as internal standard. Mass spectra were determined on a Shimadzu GCNS-QP 1000 spectrometer (70 eV). Elemental analyses were performed in Ruđer Boskovic Institute.

4-Chlorocoumarin-3-carbonitrile was prepared by the action of POCl₃ on 4-chloro-3-hydroxycoumarin in DMF according to reference (3).

General procedure for preparation of 3,4-annelated coumarins

The solution of 4-chlorocoumarin-3-carbonitrile (1.0 g, 48 mmol) and of appropriate heteroarylamine, its hydrochloride or dihydrogensulfate (48 mmol) in acetonitrile (30 ml) in presence of catalytical amount of triethylamine was refluxed for 0.5-15 hours. After cooling, the precipitated solid was filtered off, washed with acetonitrile and crystallized from DMF.

7-Amino-5-oxa-7a,8,11-triazacyclopenta[b]phenantren-6-one (1)

Yield: 83 %, m. p. 248-250 °C from DMF. IR (KBr): 3350-3210 (N-H, O-H), 1710-1700 (C=O), 1660 (C=N), 1610 (C=C) cm⁻¹. ¹H NMR (DMSO-d₆): δ = 9.20 (b s, 2H, NH₂), 8.32 (d, 1H, H-9), 8.29 (s, 1H, H-1), 7.60 (t, 1H, H-3), 7.37-7.30 (dd, 2H, H-2, H-4), 6.58 (d, 1H, H-10) ppm. ¹³C NMR (DMSO-d₆): δ = 161.5 (s, C=O), 152.2 (s, C-4a), 149.9 (s, C-10a), 149.4 (s, C-7), 148.8 (s, C-11a), 147.0 (d, C-9), 132.7 (d, C-3), 124.6 (d, C-1), 124.5 (d, C-2), 118.5 (s, C-6a), 116.8 (d, C-4), 96.9 (d, C-10), 85.2 (s, C-11b) ppm. ¹H NMR (TFA-d₃): δ = 7.98 (t, 2H, H-1, H-9), 7.64 (t, 1H, H-3), 7.30 (dd, 2H, H-2, H-4), 6.74 (s, 1H, H-10) ppm. MS(EI): m/z (%) = 252 (11.3), 251 (100), 210 (3.0), 185 (2.6), 126 (4.0), 93 (6.4), 84 (2.8), 53 (3.4), 41 (2.3), 37 (4.9), 31 (4.5). C₁₃H₈N₄O₂ (252.2): calcd. C 61.88, H 3.19, N 22.21; found C 61.71, H 3.37, N 22.15.

7-Amino-6-oxo-5-oxa-7a,8,11-triazacyclopenta[b]phenantren-10-carbonitrile (**2a**) and 7-imino-6-oxo-7H,8H-5-oxa-7a,8,11-triazacyclopenta[b]phenantren-10-carbonitrile (**2b**)

2 Yield: 93 %, m. p. 291-293 °C from DMF. IR (KBr): 3360-3250 (N-H, O-H), 1740 (C=O), 1650 (C=N), 1600-1490 (C=C) cm⁻¹. ¹H NMR (DMSO-d₆): δ = 160.7 (s, C=O), 156.9 (s, C-7), 152.9 (s, C-4a), 150.1 (s, C-11a), 149.4 (s, C-10a), 148.5 (d, C-9), 133.8 (d, C-3), 125.0 (d, C-1), 124.8 (d, C-2), 117.7 (s, C-6a), 116.8 (d, C-4), 94.0 (s, C-11b) ppm. ¹H NMR (TFA-d₃): δ = 9.74 (m, 1H, H-9), 8.28 (m, 1H, H-1), 7.81 (t, 1H, H-3),

7.40 (t, 1H) and 7.45 (t, 1H) (H-2 and H-4) ppm. $C_{14}H_7N_5O_2$ (252.2): calcd. C 60.63, H 2.54, N 25.26; found C 60.72, H 2.57, N 25.36.

2a (imino form): 1H NMR (DMSO-d₆): δ = 9.73-9.70 (d, 1H, NH), 8.69 (s, 1H, H-1), 8.77-8.73 (m, 1H, H-9), 8.44 (s, 1H, NH), 7.89-7.84 (m, 1H, H-3), 7.57-7.51 (m, 2H, H-2, H-4) ppm.

2b (enamino form): 1H NMR (DMSO-d₆): δ = 9.20 (b s, 2H, NH₂), 8.35-8.33 (d, 2H, H-1, H-9), 7.69-7.67 (m, 1H, H-3), 7.44-7.39 (m, 2H, H-2, H-4) ppm.

4-Amino(imino)-9-mercaptopo-(7H,8H)-5-oxa-7a,8,10,11-tetraazacyclopenta[b]phenantren-6-one (3)

Yield: 77 %, m. p. 310-312 °C from DMF. IR (KBr): 3300-3200 (N-H, O-H), 1720-1700 (C=O), 1670 (C=N), 1625 (C=C) cm⁻¹. 1H NMR (TFA-d₃): δ = 8.05 (d, 1H, H-1), 7.80 (m, 1H, H-3), 7.60 (t, 1H) and 7.34 (t, 1H, H-2 and H-4) ppm. $C_{12}H_7N_5O_2S$ (285.2): calcd. C 50.52, H 2.49, N 24.56; found C 50.38, H 2.82, N 24.34.

10-Fluoro-7-imino-5-oxo-7H-12-thia-7a,13-diazaindene[1,2-b]phenantren-6-one (4)

Yield: 85 %, m. p. 321-323 °C from DMF. IR (KBr): 3300 (N-H, O-H), 1710 (C=O), 1610 (C=N), 1490 (C=C) cm⁻¹. 1H NMR (TFA-d₃): δ = 8.41 (d, 1H, H-8), 8.25 (d, 1H, H-1), 7.71 (t, 1H, H-11), 7.57 (m, 1H, H-3), 7.36 (m, 3H, H-2, H-4, H-9) ppm. MS(EI): m/z (%) = 337 (21.0), 336 (100), 216 (2.4), 168 (10.6), 112 (4.6). $C_{17}H_8N_3O_2SF$ (337.3): calcd. C 60.52, H 2.39, N 12.46; found C 60.64, H 2.32, N 12.46.

11-Hydroxy-7-imino-7H-7a,12-diazabenzo[a]anthracen-6-one (5)

Yield: 96 %, m. p. 295-297 °C from DMF. IR (KBr): 3300-3180 (N-H, O-H), 1660 (C=O), 1610 (C=N), 1500 (C=C) cm⁻¹. 1H NMR (DMSO-d₆): δ = ~10 (b s, 1H, OH), 9.77 (s, 1H, NH), 8.82-8.76 (dd, 2H, H-1, H-10), 7.61-7.56 (t, 1H, H-8), 7.39-7.36 (d, 1H, H-3), 7.32-7.25 (dd, 2H, H-2), H-4), 7.18 (t, 1H, H-9) ppm. ^{13}C NMR (DMSO-d₆): δ = 160.9 (C=O), 152.7 (s, C-4a), 151.2 (s, C-11a), 149.6 (s, C-7), 133.2 (d, C-3), 127.8 (s, C-12a), 126.7 (d, C-1), 124.8 (s, C-11), 123.8 (d, C-2), 119.6 (d, C-8), 119.3 (d, C-10), 117.9 (s, C-6a), 116.3 (d, C-9), 115.9 (d, C-4), 93.6 (s, C-12b) ppm. 1H NMR (TFA-d₃): δ = 8.57 (d, 1H, H-8), 8.30 (d, 1H, H-1), 7.70 (t, 1H, H-9), 7.61 (d, 1H, H-3), 7.53 (t, 1H, H-10), 7.32 (d, 1H) and 7.41 (t, 1H) (H-2 and H-4) ppm. MS(EI): m/z (%) = 279 (15.5), 278 (100), 234 (6.0), 210 (7.5), 139 (4.0), 34 (12.7). $C_{15}H_9N_3O_3$ (279.2): calcd. C 64.40, H 3.25, N 15.04; found C 64.23, H 3.40, N 15.17.

7-Imino-7H-5-oxa-7a,14-diazadibenzo[a,h]anthracen-6-on (6)

Yield: 85 %, m. p. 330-332 °C from DMF. IR (KBr): 3300 (N-H, O-H), 1700 (C=O), 1650 (C=N), 1500 (C=C) cm⁻¹. 1H NMR (TFA-d₃): δ = 8.21 (m, 1H, H-1), 7.69 (s, 2H, H-3, H-10), 7.32 (m, 1H) and 7.44 (m, 1H) (H-2 and H-4), quinoline protons: 9.27 (d, 1H), 8.66 (m, 1H), 7.93 (s, 1H), and 7.81 (m, 2H) ppm. ^{13}C NMR (TFA-d₃): δ = 165.6 (C=O), 159.97 (s, C-4a), 156.5 (s, C-13a), 156.3 (s, C-7), 153.9 (s, C-14a), 139.7 (d, C-13), 139.4 (d, C-12), 136.3 (s, C-7b), 133.9 (d, C-3), 131.4 (d, C-1), 129.7 (d, C-2), 129.1 (d, C-8), 128.8 (d, C-9), 127.8 (s, C-6a), 124.2 (d, C-4), 119.5 (d, C-11), 118.7 (d, C-10), 118.7 (s, C-11a), 96.2 (s, C-14b) ppm. MS(EI): m/z (%) = 313 (20.3), 312 (100), 286 (4.5), 285 (26.7), 192 (11.1), 156 (3.6), 66 (9.5). $C_{19}H_{11}N_3O_2$ (313.3): calcd. C 72.83, H 3.53, N 13.41; found C 71.60, H 3.39, N 15.22.

Acknowledgement We are indebted to Ivan Habuš Ph. D from Ruder Bošković Institute for helpful discussions.

References

- (1) L. Stefanović-Kaljaj, V. Kaljaj, M. Trkovnik, S. Mladenović, J. Serb. Chem. Soc. **54**, 169-172 (1989).
- (2) L. Kaljaj, V. Kaljaj, S. Dekić, L.J. Sokolić, R. Palic, J. Serb. Chem. Soc. **61**, 419-422 (1996).
- (3) S. Chechi, L. Pecori Vettori, M. Mambagiotti Alberti, Gaz. Chim. Ital. **98** 1448-1761 (1968).

Received on October 11, 2001